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1. Introduction

Quadratic programming (QP) is a special branch of mathematical programming
which has various theoretical and practical applications (see, for instance, [2, 3,
7–10, 13]).

Let Rn and Rm be finite-dimensional Euclidean spaces equipped with the stand-
ard scalar product and the Euclidean norm, Rm×n the space of (m × n)−matrices
equipped with the matrix norm induced by the vector norms in Rn and Rm. Let
Rn×nS be the space of symmetric (n× n)−matrices equipped with the matrix norm
induced by the vector norms in Rn. Let

� := Rn×nS × Rm×n × Rn × Rm.
Consider the following general quadratic programming problem with linear con-
straints, which will be denoted by QP(D,A, c, b),{

min f (x, c,D) := cT x + 1
2x
T Dx

x ∈ �(A, b) := {x ∈ Rn : Ax � b} (1)

depending on the parameter ω = (D,A, c, b) ∈ �, where the superscript T

denotes the transposition. The feasible region and the solution set of (1) will be
denoted, respectively, by �(A, b) and Sol(D,A, c, b). The function

ϕ : � −→ R ∪ {±∞}
defined by

ϕ(ω) =
{

inf{f (x, c,D) : x ∈ �(A, b)} if �(A, b) = ∅
+∞ if �(A, b) = ∅,
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where ω = (D,A, c, b), is said to be the optimal value function of the parametric
problem (1).

If vTDv � 0 (resp., vT Dv � 0) for all v ∈ Rn then f (·, c,D) is a convex (resp.,
concave) function and (1) is said to be a convex (resp., concave) QP problem. If
such conditions are not required then we say that (1) is an indefinite QP problem.

In [4, 5] the authors have considered convex quadratic programming problems
and obtained some results on the continuity and differentiability of the optimal
value function of the problem as a function of a parameter specifying the mag-
nitude of the perturbation. In [1], similar questions for the case of linear-quadratic
programming problems were investigated. Continuity and Lipschitzian properties
of the function ϕ(D,A, ·, ·) (the matrices D and A are fixed) were studied in [2,
3, 9, 13]. Recently, various continuity properties of the Karush-Kuhn-Tucker point
set and the solution map in indefinite quadratic programming problems have been
investigated in [15–17].

In this paper, we consider indefinite quadratic programming problems and ob-
tain several results on the continuity, the upper and lower semicontinuity of the
optimal value function ϕ at a given point ω. The obtained results can be used for
analyzing algorithms for solving the indefinite QP problems.

In Section 2, complete characterizations of the continuity of the function ϕ at a
given point are obtained. In Section 3, sufficient conditions for the upper and lower
semicontinuity of ϕ at a given point are established. Section 4 is devoted to some
remarks related to the continuity and piecewise quadratic property of the function
ϕ(D,A, ·, ·).

In proofs we use the stability results of the feasible region �(A, b) due to
Robinson [11, 12] and the Frank–Wolfe theorem on the existence of a global
minimum in a QP problem (see [6, 7]).

Our results are compared with those obtained by Best and Ding [5] on the
continuity of the function ϕ in convex QP problems (see Section 3).

The following notation will be adopted. The scalar product of vectors x, y
and the Euclidean norm of a vector x in a finite-dimensional Euclidean space are
denoted by xT y and ‖x‖, respectively. Vectors in Euclidean spaces are interpreted
as columns of real numbers. The notation x � y (resp., x > y) means that every
component of x is greater or equal (resp., greater) the corresponding component of
y. For A ∈ Rm×n, the matrix norm of A is given by

‖A‖ = max{‖Ax‖ : x ∈ Rn, ‖x‖ � 1}.
ForD ∈ Rn×nS , we define

‖D‖ = max{‖Dx‖ : x ∈ Rn, ‖x‖ � 1}.
The norm in the product space X1 × · · · ×Xk of the normed spaces X1, . . . , Xk is
set to be

‖(x1, . . . , xk)‖ = (‖x1‖2 + · · · + ‖xk‖2
)1/2

.



THE OPTIMAL VALUE FUNCTION IN INDEFINITE QUADRATIC PROGRAMMING 45

2. Continuity of the function ϕ(·)
In this section we characterize the continuity of the function ϕ at a given point ω =
(D,A, c, b). In comparison with the preceding results of Best and Chakravarti [4]
and Best and Ding [5], the advantage here is that the quadratic objective function
is allowed to be indefinite. Before obtaining the desired characterizations, we state
some lemmas.

The following regularity condition (the Slater condition) for linear inequality
systems is equivalent to the one in [11, p. 755]. Let A ∈ Rm×n, b ∈ Rm be given.
The system Ax � b is said to be regular if there exists x0 ∈ Rn such that Ax0 > b.

The following result is well-known (see, for example, [11, Theorem 1] and [2,
Theorem 3.1.5]). For the completeness of the presentation, we provide a simple
proof.

LEMMA 2.1. Let A ∈ Rm×n, b ∈ Rm. The system Ax � b is regular if and only
if the set-valued map �(·) : Rm×n × Rm −→ 2R

n

, defined by �(A′, b′) = {x ∈
Rn : A′x � b′}, is lower semicontinuous at (A, b). That is, �(A, b) is nonempty
and, for every open set V ⊂ Rn satisfying �(A, b) ∩ V = ∅ there exists δ > 0
such that�(A′, b′)∩V = ∅ for every (A′, b′) ∈ Rm×n×Rm with the property that
‖(A′, b′)− (A, b)‖ < δ.

Proof. Suppose that Ax � b is a regular system and x0 ∈ Rn is such that
Ax0 > b. Obviously, �(A, b) is nonempty. Let V be an open subset in Rn sat-
isfying �(A, b) ∩ V = ∅. Take x ∈ �(A, b) ∩ V . For every t ∈ [0, 1], we
set

xt := (1 − t)x + tx0.

Since xt → x as t → 0, there is t0 > 0 such that xt0 ∈ V . Since

Axt0 = (1 − t0)Ax + t0Ax0 > (1 − t0)b + t0b = b,
there exists δt0 > 0 such that

A′xt0 > b
′

for all (A′, b′) ∈ Rm×n × Rm satisfying

‖(A′, b′)− (A, b)‖ < δt0 . (2)

Thus, xt ∈ �(A′, b′) for every (A′, b′) fulfilling (2). Therefore �(·) is lower
semicontinuous at (A, b).

Conversely, if �(·) is lower semicontinuous at (A, b) then there exists δ > 0
such that Ax � b′ is solvable for every b′ ∈ Rm satisfying b′ > b and ‖b′ −b‖ < δ.
This implies that Ax > b is solvable. Thus Ax � b is a regular system. �
REMARK 2.1. If the inequality system Ax � b is irregular then there exists a
sequence {(Ak, bk)} in Rm×n × Rm converging to (A, b) such that, for every k, the
system Akx � bk has no solutions. This fact follows from the results of [12].
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LEMMA 2.2. (cf. [12, Lemma 3]). Let A ∈ Rm×n. If the system Ax � 0 is regular
then, for every b ∈ Rm, the system Ax � b is regular.

Proof. Assume that Ax � 0 is a regular and x̄ ∈ Rn is such thatAx̄ > 0. Setting
b̄ = Ax̄, we have b̄ > 0. Let b ∈ Rm be given arbitrarily. Then there exists t > 0
such that t b̄ > b. We have A(tx̄) = tAx̄ = t b̄. Therefore A(tx̄) > b, hence the
system Ax � b is regular. �
LEMMA 2.3. The set G := {(D,A) ∈ Rn×ns × Rm×n : Sol(D,A, 0, 0) = {0}} is
open in Rn×ns × Rm×n.

Proof. Suppose, contrary to our claim, that G is not open in Rn×ns ×Rm×n. Then
there exists a sequence {(Dk,Ak)} in Rn×ns ×Rm×n converging to (D,A) ∈ G such
that Sol(Dk,Ak, 0, 0) = {0} for every k. Then, for every k, one can find xk ∈ Rn
such that ‖xk‖ = 1 and

Akxk � 0, xTk Dkxk � 0. (3)

The sequence {xk} is bounded, hence it has a convergent subsequence. Without
loss of generality, we may assume that the sequence {xk} itself converges to some
x̄ ∈ Rn with ‖x̄‖ = 1. Taking the limits in the inequalities in (3) as k → ∞, we
obtain

Ax̄ � 0, x̄T Dx̄ � 0.

This contradicts the assumption that Sol(D,A, 0, 0) = {0}. The proof is com-
plete. �
LEMMA 2.4. If�(A, b) is nonempty and if Sol(D,A, 0, 0) = {0} then, for every
c ∈ Rn, Sol(D,A, c, b) is a nonempty compact set.

Proof. Let �(A, b) be nonempty and Sol(D,A, 0, 0) = {0}. Suppose that
Sol(D,A, c, b) = ∅ for some c ∈ Rn. By the Frank-Wolfe Theorem (see [6]
and [7, Theorem 2.8.1]), there exists a sequence {xk} such that Axk � b for every
k and

f (xk, c,D) = cT xk + 1

2
xTk Dxk → −∞ as k → ∞.

It is clear that ‖xk‖ → +∞ as k → ∞. By taking a subsequence, if necessary, we
may assume that ‖xk‖−1xk → x̄ ∈ Rn and

f (xk, c,D) = cT xk + 1

2
xTk Dxk < 0 for every k. (4)

We have

A
xk

‖xk‖ � b

‖xk‖ .



THE OPTIMAL VALUE FUNCTION IN INDEFINITE QUADRATIC PROGRAMMING 47

Letting k → ∞, we obtain x̄ ∈ �(A, 0). Dividing both sides of the inequal-
ity in (4) by ‖xk‖2 and letting k → ∞, we get x̄T Dx̄ � 0. Since ‖x̄‖ = 1,
Sol(D,A, 0, 0) = {0}, contradicting the assumption Sol(D,A, 0, 0) = {0}. Thus
Sol(D,A, c, b) is nonempty for each c ∈ Rn.

If, for some c ∈ Rn, the set Sol(D,A, c, b) is unbounded then there exists a
sequence {xk} such that xk ∈ Sol(D,A, c, b) for every k, ‖xk‖ → ∞ as k → ∞
and {‖xk‖−1xk} converges to a certain x̄ ∈ Rn. Taking any x ∈ �(A, b), we have

cT xk + 1

2
xTk Dxk � cT x + 1

2
xT Dx, (5)

Axk � b. (6)

Dividing both sides of (5) by ‖xk‖2, both sides of (6) by ‖xk‖, and letting k → ∞,
we obtain

x̄T Dx̄ � 0, Ax̄ � 0.

Thus Sol(D,A, 0, 0) = {0}, a contradiction. We have proved that, for every c ∈
Rn, the solution set Sol(D,A, c, b) is bounded. Fixing any x̄ ∈ Sol(D,A, c, b)
one has

Sol(D,A, c, b) = {x ∈ �(A, b) : f (x, c,D) = f (x̄, c,D)}.
Hence Sol(D,A, c, b) is a closed set and, therefore, Sol(D,A, c, b) is a compact
set. �

We are now in a position to state our first theorem on the continuity of the
optimal value function ϕ. This theorem describes the set of two conditions which
is necessary and sufficient for the continuity of ϕ at a point ω = (D,A, c, b) where
ϕ has a finite value.

THEOREM 2.1. Let (D,A, c, b) ∈ Rn×ns × Rm×n × Rn × Rm. Assume that
ϕ(D,A, c, b) = ±∞. Then, the optimal value function ϕ(·) is continuous at
(D,A, c, b) if and only if the following two conditions are satisfied:

(a) The system Ax � b is regular,
(b) Sol(D,A, 0, 0) = {0}.
Proof. First, suppose that ϕ(·) is continuous at ω := (D,A, c, b) and ϕ(ω) =

±∞. If (a) is violated then, by Remark 2.1, there exists a sequence {(Ak, bk)} in
Rm×n × Rm converging to (A, b) such that, for every k, the system Akx � bk has
no solutions. Consider the sequence {(D,Ak, c, bk)} in Rn×ns × Rm×n ×Rn × Rm.
Since �(Ak, bk) = {x : Akx � bk} is empty for every k,

ϕ(D,Ak, c, bk) = +∞ for every k.

On the other hand, as ϕ(·) is continuous at ω and {(D,Ak, c, bk)} converges to ω,
we have

lim
k→∞

ϕ(D,Ak, c, bk) = ϕ(D,A, c, b) = ±∞.
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We have arrived at a contradiction. This shows that (a) is fulfilled.
Now we suppose that (b) fails to hold. Then there is a nonzero vector x̄ ∈ Rn

such that

Ax̄ � 0, x̄T Dx̄ � 0. (7)

Consider the sequence {(Dk,A, c, b)}, where Dk := D − 1
k
E, E is the unit matrix

in Rn×n. From the assumption ϕ(ω) = ±∞, it follows that �(A, b) is nonempty.
Since�(A, b) = ∅, from (7) and from the inclusion�(A, b)+�(A, 0) ⊆ �(A, b),
we conclude that �(A, b) is unbounded. For every k, it follows from (7) that

x̄T Dkx̄ = x̄T (D − 1

k
E)x̄ < 0.

Hence, for any x belonging to�(A, b) and for any t > 0, we have x+t x̄ ∈ �(A, b)
and

f (x + t x̄, c,Dk) = cT (x + t x̄)
+ 1

2
(x + t x̄)T Dk(x + t x̄)→ −∞ as t → ∞.

This implies that, for all k, Sol(Dk,A, c, b) = ∅ and ϕ(Dk,A, c, b) = −∞. We
have arrived at a contradiction, because ϕ(·) is continuous at ω, {(Dk,A, c, b)}
converges to ω and ϕ(ω) = ±∞. We have proved that (b) holds true.

From now on we assume that (a), (b) are satisfied and {(Dk,Ak, ck, bk)} is
an arbitrary sequence in � converging to ω. The assumption (a) and Lemma 2.1
yield the existence of a positive integer k0 such that �(Ak, bk) = ∅ for every
k � k0. The assumption (b) and Lemma 2.3 imply that there exists a positive
integer k1 � k0 such that Sol(Dk,Ak, 0, 0) = {0} for every k � k1. By Lemma
2.4, one has Sol(Dk,Ak, ck, bk) = ∅ for every k � k1. Therefore, for every k � k1,
ϕ(Dk,Ak, ck, bk) is a finite number. This means that, for every k � k1, there exists
xk ∈ Rn satisfying

ϕ(Dk,Ak, ck, bk) = cTk xk + 1

2
xTk Dxk, (8)

Akxk � bk. (9)

By the Frank–Wolfe Theorem (see [6], [7, Theorem 2.8.1]), since ϕ(ω) = ±∞,

Sol(D,A, c, b) = ∅.
Taking any x0 ∈ Sol(D,A, c, b), we have

ϕ(D,A, c, b) = cT x0 + 1

2
xT0 Dx0, (10)

Ax0 � b. (11)
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By Lemma 2.1, there exists a sequence {yk} in Rn converging to x0 and

Akyk � bk for every k � k1. (12)

From (12) it follows that yk ∈ �(Ak, bk) for k � k1. Then

ϕ(Dk,Ak, ck, bk) � cTk yk + 1

2
yTk Dkyk. (13)

From (13) it follows that

lim sup
k→∞

ϕ(Dk,Ak, ck, bk) � lim sup
k→∞

(cTk yk + 1

2
yTk Dkyk)

= lim
k→∞

(cTk yk + 1

2
yTk Dkyk).

Therefore, taking account of (10) and (11), we get

lim sup
k→∞

ϕ(Dk,Ak, ck, bk) � ϕ(D,A, c, b). (14)

We now claim that the sequence {xk}, k � k1, is bounded. Indeed, if the se-
quence {xk}, k � k1, is unbounded then, by taking a subsequence if necessary,
we may assume that ‖xk‖ → ∞ as k → ∞ and ‖xk‖ = 0 for all k � k1.
Then {‖xk‖−1xk}, k � k1, is a bounded sequence, hence it has a convergent sub-
sequence. Without loss of generality, we may assume that the sequence {‖xk‖−1xk},
k � k1, converges to some x̂ ∈ Rn with ‖x̂‖ = 1. From (9) we have

Ak
xk

‖xk‖ � bk

‖xk‖ .

Letting k → ∞, we obtain

Ax̂ � 0. (15)

By (8) and (13),

cTk xk + 1

2
xTk Dkxk � cTk yk + 1

2
yTk Dkyk. (16)

Dividing both sides of (16) by ‖xk‖2 and taking limits as k → ∞, we get

x̂T Dx̂ � 0. (17)

By (15) and (17), we have Sol(D,A, 0, 0) = {0}. This contradicts (b). We have
thus shown that the sequence {xk}, k � k1, is bounded; hence it has a convergent
sequence. Without loss of generality, we may assume that the sequence {xk}, k �
k1, converges to a point x̃ ∈ Rn. By (8) and (9),

lim
k→∞ ϕ(Dk,Ak, ck, bk) = cT x̃ + 1

2
x̃T Dx̃ = f (x̃, c,D), (18)

Ax̃ � b. (19)
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From (19) it follows that x̃ ∈ �(A, b). Hence

f (x̃, c,D) � ϕ(D,A, c, b).

Therefore,

lim
k→∞

ϕ(Dk,Ak, ck, bk) � ϕ(D,A, c, b). (20)

Combining (14) and (20) gives

lim
k→∞

ϕ(Dk,Ak, ck, bk) = ϕ(D,A, c, b).

This shows that ϕ is continuous at (D,A, c, b). The proof is complete. �
EXAMPLE 2.1. Consider the problem QP(D,A, c, b) where m = 3, n = 2,

D =
[

1 0
0 −1

]
, A =


1 0

0 1
1 −2


 , c =

(
1
1

)
, b =


0

0
0


 .

It can be verified that ϕ(D,A, c, b) = 0, Sol(D,A, 0, 0) = {0}, and the system
Ax � b is regular. By Theorem 2.1, ϕ is continuous at (D,A, c, b).

EXAMPLE 2.2. Consider the problem QP(D,A, c, b) where m = n = 1, D =
[1], A = [0], c = (1), b = (0). It can be shown that ϕ(D,A, c, b) = 0, and the
system Ax � b is irregular. By Theorem 2.1, ϕ is not continuous at (D,A, c, b).

REMARK 2.2. If �(A, b) is nonemty then �(A, 0) is the recession cone of
�(A, b). By definition, Sol(D,A, 0, 0) is the solution set of the problem
QP(D,A, 0, 0). So, verifying the assumption Sol(D,A, 0, 0) = {0} is equivalent
to solving one special QP problem. Note that this assumption is equivalent to the
requirement that xT Dx > 0 for all x ∈ Rn \ {0} satisfying Ax � 0. In particular,
Sol(D,A, 0, 0) = {0} in the case where D is a positive definite matrix and in the
case where �(A, b) is a bounded set (in the latter case, �(A, 0) = {0}). It can be
shown by examples that the assumption Sol(D,A, 0, 0) = {0} is fulfilled for many
other QP problems, and there are many QP problems where this assumption fails
to hold.

Now we study the continuity of the optimal value function ϕ(·) at a point where
its value is infinity. Let α ∈ {+∞,−∞} and ϕ(D,A, c, b) = α. We say that ϕ(·)
is continuous at (D,A, c, b) if, for every sequence {(Dk,Ak, ck, bk)} in Rn×ns ×
Rm×n × Rn × Rm converging to (D,A, c, b),

lim
k→∞ ϕ(Dk,Ak, ck, bk) = α.

The next theorem characterizes the continuity of ϕ at a point ω = (D,A, c, b)

where ϕ has the value −∞.
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THEOREM 2.2. Let (D,A, c, b) ∈ Rn×ns ×Rm×n×Rn×Rm and ϕ(D,A, c, b) =
−∞. Then, the optimal value function ϕ is continuous at (D,A, c, b) if and only if
the system Ax � b is regular.

Proof. Suppose that ϕ(D,A, c, d) = −∞ and ϕ is continuous at (D,A, c, b)
but the systemAx � b is irregular. By Remark 2.1, there exists a sequence {(Ak, bk)}
in Rm×n×Rm converging to (A, b) such that, for every k, the system Akx � bk has
no solutions. Consider the sequence {(D,Ak, c, bk)} in Rn×ns × Rm×n ×Rn × Rm.
Since �(Ak, bk) = ∅ for every k, ϕ(D,Ak, c, bk) = +∞ for every k. There-
fore, limk→∞ ϕ(D,Ak, c, bk) = +∞. On the other hand, since ϕ is continuous at
(D,A, c, b) and since {(D,Ak, c, bk)} converges to (D,A, c, b),

+∞ = lim
k→∞

ϕ(D,Ak, c, bk) = ϕ(D,A, c, b) = −∞.

We have arrived at a contradiction. This proves that Ax � b is a regular system.
Conversely, assume that ϕ(D,A, c, d) = −∞ and that the system Ax � b is

regular. Let {(Dk,Ak, ck, bk)} be an arbitrary sequence in Rn×ns ×Rm×n×Rn×Rm
converging to (D,A, c, b). By the assumption, ϕ(D,A, c, b) = −∞, hence there
is a sequence {x(i)} in Rn such that

f (x(i), c,D) = cT x(i) + 1

2
(x(i))T Dx(i),

Ax(i) � b

and

f (x(i), c,D) −→ −∞ as i → ∞. (21)

By Lemma 2.1, for every i, there exists a sequence {y(i)k } in Rn with the property
that

Aky
(i)
k � bk, (22)

lim
k→∞ y

(i)
k = x(i). (23)

By (22),

ϕ(Dk,Ak, ck, bk) � cTk y
(i)
k + 1

2
(y
(i)
k )

T Dky
(i)
k . (24)

From (23) and (24) it follows that

lim sup
k→∞

ϕ(Dk,Ak, ck, bk) � cT x(i) + 1

2
(x(i))T Dx(i). (25)

Combining (25) with (21), we obtain

lim sup
k→∞

ϕ(Dk,Ak, c,bk) = −∞.
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This implies that

lim
k→∞ ϕ(Dk,Ak, ck, bk) = −∞ = ϕ(D,A, c, b).

Thus ϕ is continuous at (D,A, c, b). The proof is complete. �
The following theorem characterizes the continuity of ϕ at a point ω = (D,A,

c, b) where ϕ has the value +∞.

THEOREM 2.3. Let (D,A, c, b) ∈ Rn×ns ×Rm×n×Rn×Rm and ϕ(D,A, c, b) =
+∞. Then, the optimal value function ϕ is continuous at (D,A, c, b) if and only if
Sol(D,A, 0, 0) = {0}.

Proof. Suppose that ϕ(D,A, c, b) = +∞ and that ϕ is continuous at (D,A, c, b)
but Sol(D,A, 0, 0) = {0}. Then there exists a nonzero vector x̄ ∈ Rn such that

Ax̄ � 0, x̄T Dx̄ � 0.

Let x̄ = (x̄1, . . . , x̄n)
T . We define a matrix M of the order m × n by setting M =

[mij ], where

mij = x̄j for 1 � i � m, 1 � j � n.

Let

Dk = D − 1

k
E, Ak = A+ 1

k
M,

where E is the unit matrix in Rn×n. Consider the sequence {(Dk,Ak, c, b)}. A
simple computation shows that

Akx̄ > 0 for every k.

By Lemma 2.2, for every k we have that the system Akx � b is regular, hence it is
solvable. Let z be a solution of the system Akx � b. Since Akx̄ > 0 and

x̄T Dkx̄ = x̄T Dx̄ − x̄T x̄

k
< 0

for every k,

f (z+ t x̄, c,Dk) = cT (z+ t x̄)+ 1

2
(z + t x̄)T Dk(z+ t x̄)→ −∞

as t → ∞. Since z+ t x̄ ∈ �(Ak, b) for every k and for every t > 0, Sol(Dk,Ak,
c, b) = ∅.We have arrived at a contradiction, because ϕ is continuous at (D,A, c, b)
and

−∞ = lim
k→∞

ϕ(Dk,Ak, c, b) = ϕ(D,A, c, b) = +∞.
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Conversely, assume that Sol(D,A, 0, 0) = {0} and {(Dk,Ak, ck, bk)} is an
arbitrary sequence in Rn×ns × Rm×n × Rn × Rm converging to (D,A, c, b). We
shall show that

lim inf
k→∞ ϕ(Dk,Ak, ck, bk) = +∞.

Suppose that lim infk→∞ ϕ(Dk,Ak, ck, bk) < +∞. Without loss of generality, we
may assume that

lim inf
k→∞

ϕ(Dk,Ak, ck, bk) = lim
k→∞

ϕ(Dk,Ak, ck, bk) < +∞.
Then, there exist a positive integer k1 and a constant γ � 0 such that

ϕ(Dk,Ak, ck, bk) � γ

for every k � k1. As Sol(D,A, 0, 0) = {0}, by Lemma 2.3 we may assume that
there is an positive integer k2 such that Sol(Dk,Ak, 0, 0) = {0} for every k � k2.
By Lemma 2.4 we may assume that Sol(Dk,Ak, ck, bk) = ∅ for every k � k2.
Hence there exists a sequence {xk} in Rn such that, for every k � k2, we have

ϕ(Dk,Ak, ck, bk) = cTk xk + 1

2
xTk Dkxk � γ, (26)

Akxk � bk. (27)

We now prove that {xk} is a bounded sequence. Suppose, contrary to our claim,
that the sequence {xk} is unbounded. Without loss of generality, we may assume
that ‖xk‖ = 0 for every k and that ‖xk‖ → ∞ as k → ∞. Then the sequence
{‖xk‖−1xk} is bounded and it has a convergent subsequence. We may assume that
the sequence {‖xk‖−1xk} itself converges to a point x0 ∈ Rn with ‖x0‖ = 1. By
(27) we have

Ak
xk

‖xk‖ � bk

‖xk‖ ,

hence

Ax0 � 0. (28)

By dividing both sides of the inequality in (26) by ‖xk‖2 and taking the limits as
k → ∞, we get

xT0 Dx0 � 0. (29)

By (28) and (29), we have Sol(D,A, 0, 0) = {0}, a contradiction to our assump-
tion. Thus the sequence {xk} is bounded, and it has a convergent subsequence.
Without loss of generality, we may assume that {xk} converges to x̄ ∈ Rn. Letting
k → ∞, from (27) we obtain

Ax̄ � b.
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This means that�(A, b) = ∅.We have arrived at a contradiction because ϕ(D,A,
c, b) = +∞. The proof is complete. �
From Theorems 2.1–2.3 it follows that conditions (a), (b) in Theorem 2.1 are suffi-
cient for the function ϕ(·) to be continuous at the given parameter value (D,A, c, b).

In the next section we shall obtain sufficient conditions for the upper semi-
continuity (resp., lower semicontinuity) of the function ϕ(·) at a given parameter
value.

3. Semicontinuity of the function ϕ(·)
As it has been shown in the preceding section, continuity of the optimal value
function holds under a special set of conditions. In some situations, only the upper
semicontinuity or the lower semicontinuity of that function is required. So one
may wish to have simple sufficient conditions for the upper semicontinuity and
the lower semicontinuity of ϕ at a given point. Such conditions are given in this
section.

A sufficient condition for the upper semicontinuity of the function ϕ(·) at a
given parameter value is given in the following theorem.

THEOREM 3.1. Let (D,A, c, b) ∈ Rn×ns ×Rm×n×Rn×Rm. If the system Ax � b
is regular then ϕ(·) is upper semicontinuous at (D,A, c, b).

Proof. As Ax � b is regular, we have �(A, b) = ∅, hence

ϕ(D,A, c, b) < +∞.
Let {(Dk,Ak, ck, bk)} be an arbitrary sequence in Rn×ns × Rm×n × Rn × Rm con-
verging to (D,A, c, b). Since ϕ(D,A, c, b) < +∞, there is a sequence {x(i)} in
Rn such that Ax(i) � b and

f
(
x(i), c,D

) = cT x(i) + 1

2

(
x(i)

)T
Dx(i) −→ ϕ(D,A, c, b) as i → ∞.

By Lemma 2.1 and by the regularity of the system Ax � b, for each i one can find
a sequence {y(i)k } in Rn such that Aky

(i)
k � bk and

lim
k→∞ y

(i)
k = x(i).

Since y(i)k ∈ �(Ak, bk),
ϕ(Dk,Ak, ck, bk) � f (y(i), ck,Dk).

This implies that

lim sup
k→∞

ϕ(Dk,Ak, ck, bk) � f (x(i), c,D).



THE OPTIMAL VALUE FUNCTION IN INDEFINITE QUADRATIC PROGRAMMING 55

Taking limits in the last inequality as i → ∞, we obtain

lim sup
k→∞

ϕ(Dk,Ak, ck, bk) � ϕ(D,A, c, b).

We have proved that ϕ(·) is upper semicontinuous at (D,A, c, b). �
The next example shows that the regularity condition in Theorem 3.1 does not

guarantee the lower semicontinuity of ϕ at (D,A, c, b).

EXAMPLE 3.1. Consider the problem QP(D,A, c, b) where m = n = 1, D =
[0],A = [1], c = (0), b = (0). It is clear thatAx � 0 is regular, Sol(D,A, c, b) =
�(A, b) = {x : x � 0}, and ϕ(D,A, c, b) = 0. Consider the sequence {(Dk,A,
c, b)}, where Dk = D − [

1
k

]
. We have ϕ(Dk,A, c, b) = −∞ for every k, so

lim inf
k→∞ ϕ(Dk,A, c, b) < ϕ(D,A, c, b).

Thus ϕ is not lower semicontinuous at (D,A, c, b).
The following example is designed to show that the regularity condition in

Theorem 3.1 is sufficient but not necessary for the upper semicontinuity of ϕ at
(D,A, c, b).

EXAMPLE 3.2. Choose a matrix A ∈ Rm×n and a vector b ∈ Rm such that
�(A, b) = ∅ (then the system Ax � b is irregular). Fix an arbitrary matrix D ∈
Rn×nS and an arbitrary vector c ∈ Rn. Since ϕ(D,A, c, b) = +∞, for any sequence
{(Dk,Ak, ck, bk)} converging to (D,A, c, b), we have

lim sup
k→∞

ϕ(Dk,Ak, ck, bk) � ϕ(D,A, c, b).

Thus ϕ is upper semicontinuous at (D,A, c, b).

A sufficient condition for the lower semicontinuity of the function ϕ(·) is given in
the following theorem.

THEOREM 3.2. Let (D,A, c, b) ∈ Rn×ns ×Rm×n×Rn×Rm. If Sol(D,A, 0, 0) =
{0} then ϕ(·) is lower semicontinuous at (D,A, c, b).

Proof. Assume that Sol(D,A, 0, 0) = {0}. Let {(Dk,Ak, ck, bk)} be an arbitrary
sequence in Rn×ns × Rm×n × Rn × Rm converging to (D,A, c, b). We claim that

lim inf
k→∞

ϕ(Dk,Ak, ck, bk) � ϕ(D,A, c, b).

Indeed, suppose that

lim inf
k→∞

ϕ(Dk,Ak, ck, bk) < ϕ(D,A, c, b).

Without loss of generality, we may assume that

lim inf
k→∞

ϕ(Dk,Ak, ck, bk) = lim
k→∞

ϕ(Dk,Ak, ck, bk).
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Then there exist an index k1 and a real number γ such that γ < ϕ(D,A, c, b) and

ϕ(Dk,Ak, ck, bk) � γ for every k � k1.

Since ϕ(Dk,Ak, ck, bk) < +∞, we must have �(Ak, bk) = ∅ for every k � k1.

As

Sol(D,A, 0, 0) = {0},
by Lemma 2.3 there exists an index k2 � k1 such that Sol(Dk,Ak, 0, 0) = {0} for
every k � k2. As �(Ak, bk) = ∅, applying Lemma 2.4 we have Sol(Dk,Ak, ck,
bk) = ∅ for every k � k2. Hence there exists a sequence {xk} such that we have
Akxk � bk for every k � k2, and

cTk xk + 1

2
xTk Dkxk = ϕ(Dk,Ak, ck, bk) � γ.

The sequence {xk} must be bounded. Indeed, if {xk} is unbounded then, without
loss of generality, we may assume that ‖xk‖ = 0 for every k and ‖xk‖ → ∞
as k → ∞. Then the sequence {‖xk‖−1xk} is bounded and, therefore, it has a
convergent subsequence. We may assume that this sequence itself converges to a
vector v ∈ Rn with ‖v‖ = 1. Since

Ak
xk

‖xk‖ � bk

‖xk‖ for every k � k2,

we have Av � 0. On the other hand, since

cTk
xk

‖xk‖ + 1

2

xTk

‖xk‖Dk
xk

‖xk‖ � γ

‖xk‖2

then

vT Dv � 0.

Combining all the above we get v ∈ Sol(D,A, 0, 0) \ {0}, a contradiction. We
have thus proved that the sequence {xk} is bounded. Without loss of generality, we
may assume that xk → x̄ ∈ Rn. Since Akxk � bk for every k, we have Ax̄ � b,

that is x̄ ∈ �(A, b). Since

cTk xk + 1

2
xTk Dkxk � γ

then

f (x̄, c,D) = cT x̄ + 1

2
x̄T Dx̄ � γ.

As γ < ϕ(D,A, c, b), we have f (x̄, c,D) < ϕ(D,A, c, b). This is an absurd
because x̄ ∈ �(A, b).
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We have proved that ϕ(·) is lower semicontinuous at (D,A, c, b). �
The next example shows that the condition Sol(D,A, 0, 0) = {0} in Theorem

3.2 does not guarantee the upper semicontinuity of ϕ at (D,A, c, b).

EXAMPLE 3.3. Consider the problem QP(D,A, c, b) where m = n = 1, D =
[1], A = [0], c = (0), b = (0). It is clear that Sol(D,A, 0, 0) = {0}. Consider
the sequence {(D,A, c, bk)}, where bk = ( 1

k
). We have ϕ(D,A, c, b) = 0 and

ϕ(D,A, c, bk) = +∞ for all k (because �(A, bk) = ∅ for all k). Therefore

lim sup
k→∞

ϕ(D,A, c, bk) = +∞ > 0 = ϕ(D,A, c, b).

Thus ϕ is not upper semicontinuous at (D,A, c, b).
The condition Sol(D,A, 0, 0) = {0} in Theorem 3.2 is sufficient but not neces-

sary for the lower semicontinuity of ϕ at (D,A, c, b).

EXAMPLE 3.4. Consider the problem QP(D,A, c, b) where m = n = 1, D =
[−1], A = [1], c = (1), b = (0). It is clear that Sol(D,A, 0, 0) = ∅. Since
ϕ(D,A, c, b) = −∞, for any sequence {(Dk,Ak, ck, bk)} converging to (D,A, c, b),
we have

lim inf
k→∞ ϕ(Dk,Ak, ck, bk) � ϕ(D,A, c, b).

Thus ϕ is lower semicontinuous at (D,A, c, b).
In the remainder of this section we shall compare the results above with those

obtained by Best and Ding [5] on the continuity of the function ϕ(·) in convex
quadratic programming problems.

As in [5], we consider the QP problem QP(D,A, c, b) :{
min f (x, c,D) := cT x + 1

2x
T Dx

x ∈ �(A, b) := {x ∈ Rn : Ax � b},
and assume thatD is a symmetric positive semidefinite matrix. Under that assump-
tion, the function f (·, c,D) is convex. Together with the problem QP(D,A, c, b)

above, we consider the following parametric quadratic programming problem
QP(D(t), A(t), c(t), b(t)) :{

min f (x, c(t),D(t)) := cT (t)x + 1
2x
T D(t)x

x ∈ �(A(t), b(t)) := {x ∈ Rn : A(t)x � b(t)},
where t ∈ Rk is a parameter. Suppose thatD(t), A(t), c(t), b(t) are vector-valued
functions which are continuous at t = 0, and D(0) = D, A(0) = A, c(0) =
c, b(0) = b. Besides, for every t, D(t) is a symmetric positive semidefinite matrix.
Set

ϕ(t) = inf{f (x, c(t),D(t)) : x ∈ �(A(t), b(t))}.
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(If�(A(t), b(t)) = ∅ then we set ϕ(t) = +∞). According to [5],QP(D,A, c, b)
is said to be a regular problem if the following two conditions are satisfied:

(R1) There does not exist s ∈ Rn \ {0} such that

As � 0, cT s � 0, Ds = 0.

(R2) There does not exist λ ∈ Rm \ {0} such that

AT λ = 0, λ � 0, bT λ � 0.

The main results of [5] are stated as follows.

THEOREM 3.3. ([5, Theorem 2.1]). If condition (R1) holds then the function ϕ(t)
is lower semicontinuous at t = 0.

THEOREM 3.4. ([5, Theorem 2.2]). If the conditions (R1) and (R2) hold then the
function ϕ(t) is continuous at t = 0.

Note that if Sol(D,A, 0, 0) = {0} then (R1) holds. Indeed, if (R1) does not
hold then there exists s̄ ∈ Rn\{0} such that As̄ � 0, cT s̄ � 0, Ds̄ = 0. Therefore,

f (s̄, 0,D) = 1

2
s̄T Ds̄ = 0.

Hence Sol(D,A, 0, 0) = {0}.
From the remark above we conclude that the assumption of Theorem 3.2 is

stronger than the assumption of Theorem 3.3. But we have to stress that Theorem
3.3 can be applied only to the class of convex problems, while Theorem 3.2 can be
used also for nonconvex problems.

It can be shown that (R2) is equivalent to the regularity of the inequality system
Ax � b. Indeed, if the system Ax � b is irregular (that is the system Ax > b has
no solutions) then for any sequence {bk} satisfying bk > b for all k, bk → b, the
inequality systems Ax � bk have no solutions. Then, for each k there exists ([7,
Theorem 2.7.8]) λk ∈ Rm such that

AT λk = 0, λk � 0, bTk λk > 0.

Since λk = 0, we have

AT
λk

‖λk‖ = 0,
λk

‖λk‖ � 0, bTk
λk

‖λk‖ > 0.

This yields the existence of a vector v ∈ Rn \ {0} satisfying

AT v = 0, v � 0, bT v � 0,
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hence (R2) is violated. Conversely, suppose that (R2) does not hold, that is there
exists λ ∈ Rm \ {0} such that

AT λ = 0, λ � 0, bT λ � 0.

If there is x̄ satisfying Ax̄ > b, then

0 < (Ax̄ − b)T λ = x̄T AT λ− bT λ = −bT λ � 0,

a contradiction. Therefore, the system Ax � b is irregular.
The just mentioned equivalence and Theorem 3.1 show that if (R2) is valid then

ϕ(t) is upper semicontinuous at t = 0. Thus, Theorem 3.4 is a direct corollary of
Theorems 3.1 and 3.3.

The following example illustrates the results presented in this section.

EXAMPLE 3.5. Consider the problem QP(D,A, c, b) where n = m = 1, D =
[1], A = [1], c = (−1), b = (0).Direct calculation shows that Sol(D,A, 0, 0) =
{0}, and that conditions (R1), (R2) hold. (Then the system Ax � b is regular.)
Thus the assumptions of Theorems 3.1–3.4 are satisfied. Note that, in this case, the
assertions of Theorems 3.1 and 3.2 cover those of Theorems 3.3 and 3.4.

The next two examples show that the conditions (R1) and (R2) (resp., (R1))
in Theorem 3.4 (resp., Theorem 3.3) are not enough for the continuity (resp., the
lower semicontinuity) of ϕ(·) at (D,A, c, b) if QP(D,A, c, b) is embedded into
the class of indefinite QP problems. In other words, they show that the results in
Theorems 3.1 and 3.2 are different from the one in Theorem 3.4 (resp., Theorem
3.3).

EXAMPLE 3.6. Consider the problem QP(D,A, c, b) where n = m = 1, D =
[0], A = [1], c = (1), b = (0).We have Sol(D,A, 0, 0) = �(A, 0) = {x ∈ R :
x � 0}, ϕ(D,A, c, b) = 0. Besides, the system Ax � b is regular. It is obvious
that (R1) and (R2) hold. From Theorem 3.4 it follows that ϕ is continuous at
(D,A, c, b) ifQP(D,A, c, b) is embedded into the class of convex QP problems.
Meanwhile, by Theorem 2.1, ϕ is not continuous at (D,A, c, b) ifQP(D,A, c, b)
is embedded into the class of indefinite QP problems.

EXAMPLE 3.7. Consider the same problem as in Example 3.6. We have seen
that (R1) is satisfied. By Theorem 3.3, ϕ is lower continuous at (D,A, c, b) if
QP(D,A, c, b) is embedded into the class of convex QP problems. Meanwhile,
ϕ is not lower semicontinuous at (D,A, c, b) if QP(D,A, c, b) is embedded into
the class of indefinite QP problems. Indeed, consider the sequence {(Dk,A, c, b)},
where Dk = [− 1

k
]. For every k, we have ϕ(Dk,A, c, b) = −∞. Therefore

lim inf
k→∞ ϕ(Dk,A, c, b) = −∞ < 0 = ϕ(D,A, c, b).

This proves that ϕ is not lower semicontinuous at (D,A, c, b).



60 NGUYEN NANG TAM

4. Concluding remarks

We have established some results on the continuity and semicontinuity of the
optimal value function

(D,A, c, b) �→ ϕ(D,A, c, b) (30)

of the problemQP(D,A, c, b), whereD ∈ Rn×nS is an arbitrary symmetric matrix.
Continuity and Lipschitzian properties of the function

(c, b) �→ ϕ(D,A, c, b) (31)

(the matrices D, A are fixed) have been considered by several authors (see, e.g.,
[2, 3, 9, 13]). One referee of this paper noted that in [14] it has been proved that if
D is positive semidefinite then (31) is a piecewise quadratic function. The referee
also asked about piecewise quadratic properties of that when D is not assumed to
be positive semidefinite. We are not able to consult with [14]. However, inspired by
the observation of the referee, we have obtained a fact about piecewise quadratic
property of the function in (31). For proving the property, we have to invoke some
theorems on the continuity of the function (31) in [2], and also [9, Theorem 2].

Fixing a pair (D,A) ∈ Rn×nS × Rm×n, we define

ϕ(c, b) = ϕ(D,A, c, b), Sol(c, b) = Sol(D,A, c, b).
The restriction of ϕ(·, ·) on the set M := {(c, b) : Sol(c, b) = ∅} is continuous
(see [3, Theorems 1.1 and 1.2] and [2, Theorems 4.5.2]). The following fact seems
to be new:

“In general, the function

ϕ̃(c, b) :=
{
ϕ(c, b) for all (c, b) ∈ M
+∞ for all (c, b) ∈ Rn × Rm \ M

is not piecewise quadratic in the sense of [13, Definition 10.20]."
Since the proof of this fact is quite long, it will be given in a subsequent paper.

(See: G.M. Lee, N.N. Tam and N.D. Yen, On a class of optimal value functions in
quadratic programming. Manuscript, June 2001. Submitted.)
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